Chemistry and Biochemistry

Adam T. Woolley

Adam Woolley

Office: C305 BNSN
Office Phone: 801-422-1701
Lab Phone: 801-422-1397
Office Hours


BS, Brigham Young University (1992)

Ph.D., University of California, Berkeley (1997)

Runyon-Winchell Postdoctoral Fellow, Harvard University (1998-2000)

Curriculum Vitae


Woolley Lab researchers work at the interface between chemistry, engineering and biology. Thus, Woolley students receive broad technical training and are well poised to contribute in these key research fields.

Micro-and Nanometer-Scale Chemical Manipulation and Analysis:

A common theme in Woolley Lab research is the interrelationship between biological molecules and miniaturization. Woolley chemists utilize miniaturization tools to detect and quantify clinically relevant biomolecules and apply DNA in forming nanoscale materials.

A. Integrated microfluidic systems for preterm birth risk assessment. Preterm birth (PTB) is a serious issue, with approximately 10% of pregnancies resulting in a preterm delivery, frequently coupled with complications that lead to poor outcomes and increased medical costs. The Woolley Lab is developing microfluidic systems that combine extraction, fluorescent labeling and separation all in a single microchip (Fig. 1). These devices will provide high-throughput, point of care screening from a finger stick quantity of blood to assess risk of a preterm delivery, weeks before contractions begin.

B. Biotemplated nanofabrication of electronics: The Woolley Lab Group is leading an interdisciplinary team whose objective is to explore bottom-up methods for the fabrication of nanoscale electronic systems. This team folds DNA into controlled nanoscale designs that can be converted into functional electronic elements after purification and metallization (Fig. 2). The Woolley Lab is presently applying these methods in making metal-semiconductor junctions with linewidths as small as 5 nm.

C. Rapid Blood Infection Determination: Woolley researchers are developing methods for detecting bacterial infections in blood in less than one hour, in collaboration with a group of biologists and engineers. A schematic of the proposed system is shown in Figure 3. Woolley Lab's focus is on the capture and fluorescent labeling of nucleic acid material from bacteria. Woolley students are developing microfluidic systems with solid supports designed to selectively capture nucleic acid sequences from pathogenic organisms in blood. The retained nucleic acids will then be labeled fluorescently for subsequent single-molecule detection.

Figure 1. A few microliters of unlabeled blood serum are loaded on a microfluidic device that has all assay reagents preloaded in the other reservoirs. After integrated analysis functions are complete, the concentrations of PTB biomarkers will be known, providing risk assessment and enabling medical care to be implemented. (A) Multiplexed immunoaffinity extraction module. (B) Enrichment, labeling and purification module. (C) Separation module.

Figure 2. DNA origami are formed with seeding nanoparticles, purified to remove defects, and functionalized with inorganic electronic materials.

Figure 3. (Bottom) Schematic of integrated pathogen detection cartridge showing each component. (Top) Schematic of the disposable blood filtration system that delivers bacteria to the port on the cartridge.  


Sahore, V.; Sonker, M.; Nielsen, A.V.; Knob, R.; Kumar, S.; Woolley, A.T. Automated Microfluidic Devices Integrating Solid-Phase Extraction, Fluorescent Labeling and Microchip Electrophoresis for Preterm Birth Biomarker Analysis. Anal. Bioanal. Chem. in press (2018).

Gong, H.; Bickham, B.P.; Woolley, A.T.; Nordin, G.P. Custom 3D Printer and Resin for 18 μm × 20 μm Microfluidic Flow Channels. Lab Chip 17, 2899-2909 (2017).

Knob, R.; Nelson, D.B.; Robison, R.A.; Woolley, A.T. Sequence-Specific DNA Solid-Phase Extraction in an On-Chip Monolith: Towards Detection of Antibiotic Resistance Genes. J. Chromatogr. A. in press (2017).

Beauchamp, M.J.; Nordin, G.P.; Woolley, A.T. Moving From Millifluidic to Truly Microfluidic Sub 100 μm Cross-Section 3D Printed Devices. Anal. Bioanal. Chem. 409, 4311-4319 (2017).

Uprety, B.; Westover, T.; Stoddard, M.; Brinkerhoff, K.; Jensen, J.; Davis, R.; Woolley, A.T.; Harb, J. Anisotropic Electroless Deposition on DNA Origami Templates to Form Small-Diameter Conductive Nanowires. Langmuir 33, 726-735 (2017).

Gong, H.; Woolley, A.T.; Nordin, G.P. High Density 3D Printed Microfluidic Valves, Pumps, and Multiplexers. Lab Chip 16, 2450-2458 (2016).

The Woolley group's article, "Development of an integrated microfluidic solid-phase extraction and electrophoresis device," was featured on the cover of the March 2016 issue of Analyst. 

see complete list