Chemistry and Biochemistry

Matthew C. Asplund

Matthew Asplund

Office: C309 BNSN
Office Phone: 801-422-5275
Lab Phone: 801-422-5381
Office Hours


BS, Brigham Young University (1992)

Ph.D., University of California at Berkeley (1998)

Postdoctoral Fellow, University of Pennsylvania (1998-2000)


The Asplund Lab researches chemical reactions with an emphasis on spectroscopy as a means of analysis.

The development of short-pulsed lasers has allowed for direct probing of chemical reactions in real time. Typically, one laser pulse is used to initiate a chemical reaction, and a second pulse is used to probe the intermediates or products some time later. Chemical reactions in condensed phases are especially well suited to these techniques, since the steps in the reactions occur very fast, usually on a time scale shorter than a nanosecond. Asplund Lab research focuses on the use of time-resolved techniques, both on the femtosecond/picosecond time scale, and on the longer nanosecond/microsecond time scale. Of particular importance is the use of infrared spectroscopy for probing chemical species, since it is easier to correlate with molecular structure than electronic spectroscopy.

Model Ring Formation Reactions: One area of particular interest in the Asplund Lab Group is reactions involving organometallic species involved in the formation of new carbon-carbon bonds and the formation of rings. An interesting class of reactions is labeled Pauson-Khand reactions. In its most general form, it is the reaction of an alkene, and alkyne a carbonyl to form a 5-membered cyclopenteneone ring.

The reaction proceeds thermally, and a variant of the reactant that combines the alkene and alkyne in the same molecule is used to follow the reaction with time-resolved spectroscopic methods.

The reaction mechanism shows that the first step is the removal of a CO from the Mo(CO)6, followed by formation of a complex between the Mo(CO)5 and the complex, followed by formation of the ring. The Asplund Lab is trying to establish which part of the ligand attaches to the metal first.

Bi-metal catalyst systems: One of the difficulties in current catalytic systems is that they usually require use of a rare and expensive metal atom. There is tremendous interest in using bimetallic systems where the two atoms act cooperatively to give reactions that are similar to rare metals. While there are many catalytic reaction studies that have established the viability of this approach, there is little known about the details of the reactions. The Asplund Lab is applying our transient infrared spectroscopy to these bi-metallic systems to try to understand how these cooperative systems drive chemistry.

C-F bond activation reactions: One are of particular interest in my lab is reactions involving organometallic species involved in catalytic bond breaking processes. Previous work on molecules which break C—H bonds in alkanes shows that the first photon dissociates a ligand from the metal center, and then this metal atom reacts with the surrounding alkane solvent molecule to form a alkyl hydride product, having broken a C—H bond in the alkane. Currently the Lab is studying a related molecule that is able to break C—F bonds in perfluoro-benzene. This tungsten containing organometallic has a reaction between the W atom, and a tethered perfluorobenzene ring. The Asplund Lab's recently published work showed that the rate of the reaction is limited by the formation of a weak complex with the solvent. The Asplund Lab Group is to measure the spectrum of this solvent complex on a nanosecond time-scale, and compare the spectrum directly with calculations.

Laser surface patterning: In the Asplund Lab, members put time into researching novel methods for using lasers to functionalize surfaces. Working with Dr. Matt Linford, the Lab uses high intensity laser pulses to ablate, or remove, atoms from the surface of silicon wafers. The newly exposed Si atoms react rapidly with molecules in liquid placed on the surface. Using an array of micro-lenses, the Lab Group has shown rapid functionalization and patterning of surfaces with alkyl halides, epoxides, amines and other chemically important groups. The lab's current setup allows for the creation of 2500 spots each with a diameter of 2-3 microns. These spots can be functionalized with DNA, proteins or other chemical or biochemical sensors.


Woodfield, B. F., Calvin, J. J., Asplund, M. C., Akimbekov, Z., Ayoub, G., Katsenis, A. D., Navrotsky, A., Friscic, T. (2017). Heat Capacity and Thermodynamic Functions of Crystalline and Amorphous Forms of the Metal Organic Framework Zinc 2-Ethylimidazolate, Zn(EtIm)2. Journal of Chemical Thermodynamics.

Woodfield, B. F., Asplund, M. C., Calvin, J. J., Zhang, Y., Huang, B. (2017). Heat Capacity and Thermodynamic Functions of Silica-Doped γ-Al2O3. Journal of Chemical Thermodynamics.

Woodfield, B. F., Calvin, J. J., Asplund, M. C., Zhang, Y., Huang, B. (2017). Heat Capacity and Thermodynamic Functions of γ-Al2O3. Journal of Chemical Thermodynamics.

Woodfield, B. F., Calvin, J. J., Asplund, M. C., Zhang, Y., Huang, B. (2017). Heat Capacity and Thermodynamics Functions of Boehmite (AlOOH) and Silica-doped Boehmite. Journal of Chemical Thermodynamics.

Blair, N., Hancock, J. M., Simons, C. J., Thalman, S. W., Colton, J. S., Asplund, M. C., Harrison, R. G. (2015). Assemblies composed of oligothiophene-ruthenium complexes bound to CdSe nanoparticles. Journal of Luminescence, 158, 501-509.

Sevy, E. T., Patterson, J. E., Asplund, M. C. (2013). Physical Chemistry Laboratory.

Curtis, A. D., Calchera, A. R., Asplund, M. C., Patterson, J. E. (2013). Observation of sub-surface phenyl rings in polystyrene with vibrationally resonant sum-frequency generation. Vibrational Spectroscopy, 68, 71-81.

Wang, H., Lunt, B. M., Gates, R. J., Asplund, M. C., Shutthanandan, V., Davis, R. C., Linford, M. R. (2013). Carbon/Ternary Alloy/Carbon Optical Stack on Mylar as an Optical Data Storage Medium to Potentially Replace Magnetic Tape. Applied Materials and Interfaces(Aug 5, 2013), 7.

Curtis, A. D., Asplund, M. C., Patterson, J. E. (2011). Use of Variable Time-Delay Sum-Frequency Generation for Improved Spectroscopic Analysis. Journal of Physical Chemistry, 115(39), 19303-19310.

Lunt, B. M., Jiang, G., Jensen, D. S., Asplund, M. C., Hansen, D. P., Davis, R. C., Linford, M. R. (2010). Chemical Analysis of the Dyes in Today's Archival- and Standard-Grade DVDs. Proceedings of ISOM 2010, October 2010: ISOM.

Abbott, J., Niederhuaser, T. L., Lunt, B. M., Hansen, D. P., Perkins, R. T., Bell, D. A., Bard, E. C., Worthington, M. O., Miller, C. Michael, Hyatt, D. F., Asplund, M. C., Jiang, G. L., Linford, M. R., Vanfleet, R. R., Davis, R. C. (2010). Carbon coated tellurium for optical data storage. ACS Applied Materials and Interfaces, 2(8), 2373-2376.

Yang, L., Vail, M. A., Dadson, A., Lee, M. L., Asplund, M. C., Linford, M. R. (2009). Functionalization of Deuterium- and Hydrogen-Terminated Diamond Particles with Mono- and Multilayers using Di-tert-Amyl Peroxide and Their Use in Solid Phase Extraction. Chemistry of Materials, 21, 4359-4365.

Shirahata, N., Linford, M. R., Furumi, S., Pei, L., Sakka, Y., Gates, R. J., Asplund, M. C. (2009). Laser-derived one-pot synthesis of silicon nanocrystals terminated with organic monolayers. Chemical Communications, 4684-4686.

Yang, L., Shirahata, N., Saini, G., Zhang, F., Pei, L., Asplund, M. C., Kurth, D. G., Ariga, K., Sautter, K., Nakinishi, T., Smentkowski, V., Linford, M. R. (2009). Effect of Surface Free Energy on PDMS Transfer in Microcontact Printing and Its Application to ToF-SIMS to Probe Surface Energies. Langmuir, 25, 5674-5683.

Dearden, D. V., Farrell, T. A., Asplund, M. C., Zilch, L. W., Julian, R. R., Jarrold, M. F. (2009). One Ring to Bind them All: Shape-Selective Complexation of Phenylenediamine Isomers with Cucurbit[6]uril in the Gas Phase. Journal of Physical Chemistry A, 113, 989-997.

Nielsen, D. K., Nielsen, L. L., Jones, S. B., Toll, L., Asplund, M. C., Castle, S. L. (2009). Synthesis if Isohasubanan Alkaloids via Enantioselective Keton Allylation and Discovery of an Unexpedted Rearrangement. Journal of Organic Chemistry, 74, 1187-1199.

Saini, G., Gates, R., Asplund, M. C., Blair, S., Attavar, S., Linford, M. R. (2009). Directing polyallylamine adsorption on microlens array patterned silicon for microarray fabrication. Lab on a Chip, 9, 1789-1796.

Pei, L., Jiang, G., Davis, R. C., Shaver, J. M., Smentkowski, V. S., Asplund, M. C., Linford, M. R. (2007). Laser activation-modification of semiconductor surfaces (LAMSS) of 1-alkenes on silicon: A ToF-SIMS, chemometrics, and AFM analysis. Applied Surface Science, 253, 5375-5386.

Zhang, H. Z., Ferrell, T. A., Asplund, M. C., Dearden, D. V. (2007). Molecular beads on a charged molecular string: alpha, omega-alkyldiammonium complexes of curcurbit[6]uril in the gas phase. International Journal of Mass Spectrometry, 265, 187-196.

Zhang, F., Gates, R. J., Smentkowski, V. S., Natarajan, S., Gale, B. K., Watt, R. K., Asplund, M. C., Linford, M. R. (2007). Direct Adsorption and Detection of Proteins, including Ferritin, onto Microlens Array Patterned Bioarrays. Journal of the American Chemical Society, 129, 9252-9253.

Pei, L., Jiang, G. L., Davis, R. C., Chaver, J. M., Smentkowski, V. S., Asplund, M. C., Linford, M. R. (2007). Laser activation-modification of semiconductor surfaces (LAMSS) of 1-alkenes on silicon: A ToF-SIMS, chemometrics, and AFM analysis. Applied Surface Science, 253, 5375-5386.

Zhang, F., Pei, L., Bennion, E., Jiang, G. L., Connley, D., Yang, L., Lee, M. V., Davis, R. C., Smentkowski, V. S., Strossman, G., Linford, M. R., Asplund, M. C. (2006). Title: Laser activation modification of semiconductor surfaces (LAMSS). Langmuir, 22, 10859-10863.

Woodfield, B. F., Asplund, M. C. (2006). Virtual ChemLab: General General Chemistry Laboratories v2.5.

Woodfield, B. F., Asplund, M. C. (2006). Virtual Physical Science v3.0.

Zhang, F., Pei, L., Bennion, E., Jiang, G., Connley, D., Yang, L., Lee, M. V., Davis, R. C., Smentkowski, V. S., Strossman, G., Linford, M. R., Asplund, M. C. (2006). Laser Activation Modification of Semiconductor Surfaces (LAMSS). Langmuir, 22, 10859 - 10863.

Asplund, M. C., Johnson, A. M., Jakeman, J. A. (2006). Time-resolved infrared dynamics of C-F bond activation by a tungsten metal-carbonyl. Journal of Physical Chemistry, 110, 20-24.

Weeks, T., Harrison, M., Johnson, M., Shevelko, A., Ellsworth, J., Bergeson, S. D., Asplund, M. C., Knight, L. V. (2005). Absolute soft x-ray calibration of laser produced plasmas using a focusing crystal von Hamos spectrometer. Proc. SPIE, 5918, 5918.

Asplund, M. C., Anderson, J. D., Cameron, J., Vollmer-Snarr, H. R. (2005). Wavelength dependent quantum yield measurements for the photochemistry of A2E. 229th ACS National Meeting. San Diego, CA: as abstract.

Lua, Y. Y., Fillmore, W. J., Yang, L., Lee, M. V., Savage, P. B., Asplund, M. C., Linford, M. R. (2005). First Reaction of a Bare Silicon Surface with Acid Chlorides and a One-Step Preparation of Acid Chloride Terminated Monolayers on Scribed Silicon. Langmuir, 21, 2093-2097.

L. W. Zilch, G. A. Husseini, Y. Y. Lua, M. V. Lee, K. R. Gertsch, B. R. Cannon, R. M. Perry, E. T. Sevy, M. C. Asplund, A. T. Woolley, M. R. Linford, Rapid and convenient method for preparing masters for microcontact printing with 1-12 micron features, Review of Scientific Instruments, 75, 3065-3067,2004

N. Agbonkonkon, H. D. Tolley, M. C. Asplund, E. D. Lee, M. L. Lee, Prediction of gas-phase reduced ion mobility constants (K-0)Analytical Chemistry, 76, 5223-5229, 2004

G. L. Jiang, T. L. Niederhauser, S. A. Fleming, M. C. Asplund, M. R. Linford, Evidence for a radical mechanism in monolayer formation on silicon ground (or scribed) in the presence of alkyl halides, Langmuir, 20, 1772-1774, 2004

T. Pan, R. T. Kellly, M. C. Asplund, A. T. Woolley, Fabrication of calcium fluoride capillary electrophoreseis microdevices for on-chip infrared detection,Journal of Chromatography A, 1027, 2004

Y. Y. Lua, M. V. Lee, W. J. J. Fillmore, R. Matheson, A. Sathyapalan, M. C. Asplund, S. A. Fleming, M. R. Linford, Amine-reactive monolayers on scribed silicon with controlled levels of functionality: Reaction of a bare silicon surface with mono- and di-epoxides, Angewandte Chemie-International Edition, 42, 2003

G. Husseini, J.G. Peacock,T.L. Niederhauser, M. C. Asplund, E. T. Sevy, M. R. Linford, PhotoChemical Lithography:  Creation of patterned acid chloride functionalized surfaces by exposure to UV light. Langmuir 19, 4856-4858, 2003

Lua, Y.-Y.; Niederhauser; T.L.; Matheson, R.; Bristol, C.; Mowat, I.A.; Asplund, M.C.; Linford, M.R. Static Time-of-Flight Secondary Ion Mass Spectrometry of Monolayers on Scribed Silicon derived from 1-Alkenes, 1-Alkynes and 1-Haloalkanes. Langmuir, 18, 4840-4846, 2002

M. C. Asplund, P. T. Snee, J. S. Yeston, M. S. Wilkens, C. K. Payne, H. Yang, K. T. Kotz, H. Frei, R. G. Bergman, C. B. Harris, Ultrafast UV pump/IR probe studies of C-H activation in linear, cyclic and aryl hydrocarbons, Journal of the American Chemical Society 124, 10605-10612, 2002

Niederhauser, T. L.; Jiang, G.; Lua, Y.-Y.; Dorff, M. J.; Woolley, A. T.; Asplund, M. C.; Berges, D. A.; Linford, M. R.; A New Method of Preparing Monolayers on Silicon and Patterning Silicon Surfaces by Scribing in the Presence of Reactive Species, Langmuir, 17, 5889-5900, 2001

M. T. Zanni, M. C. Asplund, R. M.Hochstrasser, Two-dimensional heterodyned and stimulated infrared photon echoes of N-methylacetamide-D, J Chem Phys, 114, 4579-4590, 2001

M. C. Asplund, M. T. Zanni, R. M. Hochstrasser, Two Dimensional Infrared Spectroscopy of Peptides by Phase Controlled Femtosecond Vibrational Photon Echoes, Proceeding of National Academy of Science, 97, 8219-8224, 2000

R. M. Hochstrasser, M. C. Asplund, P. Hamm, N.-H. Ge, Femtosecond Two-Dimensional Infrared Spectroscopy, Journal of the Chinese Chemical Society, Presented at the Ultrafast Phenomena in Spectroscopy Conference, Taipei, Taiwan, October 1999

M. C. Asplund, M. Lim, R. M. Hochstrasser, Spectrally Resolved Three Pulse Photon Echoes in the Vibrational Infrared, Chemical Physics Letters, 323, 268-277, 2000

H. Yang, K. T. Kotz, M. C. Asplund, M. J. Wilkins, C. B. Harris, Ultrafast infrared studies of bond activation in organometallic complexes, Accounts of Chemical Research, 32, 551-560, 1999

M. C. Asplund, H. Yang, K. T. Kotz,  S. E. Bromberg, M. J. Wilkens, C. B. Harris, Femtosecond infrared studies of chemical bond activation, Laser Chemistry, 19, 253-262, 1999

H. Yang, M. C. Asplund, K. T. Kotz, M. J. Wilkens, H. Frei, C. B. Harris, Reaction mechanism of silicon-hydrogen bond activation studied using femtosecond to nanosecond IR spectroscopy and ab initio methods, Journal of the American Chemical Society, 120, 10154-10165, 1998

S. E. Bromberg,  H. Yang , M. C. Asplund, T. Lian, B. K. McNamara, K. T. Kotz, J. S. Yeston, M. Wilkens, H. Frei, Robert G. Bergman, C. B. Harris, The mechanism of a C-H bond activation reaction in room-temperature alkane solution, Science,  289, 260-263, 1997

H. Yang, K. T. Kotz, M. C. Asplund, C. B. Harris, Femtosecond Infrared studies of silane silicon-hydrogen bond activation, Journal of the Americal Chemical Society, 119, 9564-9565, 1997

T. Q. Lian, S. E. Bromberg, M. C. Asplund, H.  Yang, C. B. Harris,  Femtosecond infrared studies of the dissociation and dynamics of transition metal carbonyls in solution.  Journal Of Physical Chemistry, Jul 18, 1996, 100, 11994-12001.